Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) hypothesis testing based on the blood oxygenation level dependent (BOLD) contrast mechanism typically involves a search for a positive effect during a specific task relative to a control state. However, aside from positive BOLD signal changes there is converging evidence that neuronal responses within various cortical areas also induce negative BOLD signals. Although it is commonly believed that these negative BOLD signal changes reflect suppression of neuronal activity direct evidence for this assumption is sparse. Since the somatosensory system offers the opportunity to quantitatively test sensory function during concomitant activation and has been well-characterized with fMRI in the past, the aim of this study was to determine the functional significance of ipsilateral negative BOLD signal changes during unilateral sensory stimulation. For this, we measured BOLD responses in the somatosensory system during unilateral electric stimulation of the right median nerve and additionally determined the current perception threshold of the left index finger during right-sided electrical median nerve stimulation as a quantitative measure of sensory function. As expected, positive BOLD signal changes were observed in the contralateral primary and bilateral secondary somatosensory areas, whereas a decreased BOLD signal was observed in the ipsilateral primary somatosensory cortex (SI). The negative BOLD signal changes were much more spatially extensive than the representation of the hand area within the ipsilateral SI. The negative BOLD signal changes in the area of the index finger highly correlated with an increase in current perception thresholds of the contralateral, unstimulated finger, thus supporting the notion that the ipsilateral negative BOLD response reflects a functionally effective inhibition in the somatosensory system.
منابع مشابه
Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition
We used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the negative blood oxygenation level dependent (BOLD) signal and its underlying blood flow changes in healthy human subjects. This was combined with psychophysiological measurements to test that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the medi...
متن کاملSex differences in the cerebral BOLD signal response to painful heat stimuli.
There are limited data addressing the question of sex differences in pain-related cerebral processing. This study examined whether pain-related blood oxygenation level-dependent (BOLD) signal change measured with functional magnetic resonance imaging (fMRI) demonstrated sex differences, under conditions of equivalent pain perception. Twenty-eight healthy volunteers (17 women, 11 men) were subje...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملCALL FOR PAPERS Sex and Gender Differences in Pain and Inflammation Sex differences in the cerebral BOLD signal response to painful heat stimuli
Moulton, Eric A., Michael L. Keaser, Rao P. Gullapalli, Ranjan Maitra, and Joel D. Greenspan. Sex differences in the cerebral BOLD signal response to painful heat stimuli. Am J Physiol Regul Integr Comp Physiol 291: R257–R267, 2006. First published April 6, 2006; doi:10.1152/ajpregu.00084.2006.—There are limited data addressing the question of sex differences in pain-related cerebral processing...
متن کاملThalamocortical connections of the primary somatosensory cortex
Although each subdivision of primary somatosensory cortex (SI) receives dense input from the thalamus, but the exact location and type of information that the fibers convey have not been identified yet. In the present study, the exact source of thalamocortical fibers to areas 2 and 3b was investigated using tract-tracing techniques. Following injection of tracer into area 3b, labeled neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2008